Gradle User Guide

Version 3.2.1

Copyright © 2007-2016 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

|. ABOUT GRADLE

1. Introduction
2. Overview

1. WORKING WITH EXISTING BUILDS

3. Installing Gradle

4. Using the Gradle Command-Line

5. The Gradle Wrapper

6. The Gradle Daemon

7. Dependency Management Basics

8. Introduction to multi-project builds

9. Continuous build

10. Composite builds

11. Using the Gradle Graphical User Interface
12. The Build Environment

13. Troubleshooting

14. Embedding Gradle using the Tooling API

1. WRITING GRADLE BUILD SCRIPTS

15. Build Script Basics

16. Build Init Plugin

17. Writing Build Scripts

18. More about Tasks

19. Working With Files

20. Using Ant from Gradle
21. The Build Lifecycle

22. Wrapper Plugin

23. Logging

24. Dependency Management
25. Multi-project Builds

26. Gradle Plugins

27. Standard Gradle plugins
28. The Project Report Plugin
29. The Build Dashboard Plugin
30. Comparing Builds

31. Publishing artifacts

32. The Maven Plugin

33. The Signing Plugin

34. lvy Publishing (new)

35. Maven Publishing (new)
36. The Distribution Plugin
37. The Announce Plugin

38. The Build Announcements Plugin

V. EXTENDING THE BUILD

39. Writing Custom Task Classes

40. Writing Custom Plugins

41. The Java Gradle Plugin Development Plugin
42. Organizing Build Logic

43. Initialization Scripts

44, The Gradle TestKit

V. BUILDING JVM PROJECTS

45, Java Quickstart

46. The Java Plugin

47. Web Application Quickstart
48. The War Plugin

49. The Ear Plugin

50. The Jetty Plugin

51. The Application Plugin
52. The Java Library Distribution Plugin
53. Groovy Quickstart

54. The Groovy Plugin

55. The Scala Plugin

56. The ANTLR Plugin

57. The Checkstyle Plugin
58. The CodeNarc Plugin
59. The FindBugs Plugin
60. The JDepend Plugin
61. The PMD Plugin

62. The JaCoCo Plugin

63. The OSGi Plugin

64. The Eclipse Plugins
65. The IDEA Plugin

VI. THE SOFTWARE MODEL

66. Rule based model configuration

67. Software model concepts

68. Implementing model rulesin aplugin
69. Building Java Libraries

70. Building Play applications

71. Building native software

72. Extending the software model

VII. APPENDIX

A. Gradle Samples

B. Potentia Traps

C. The Feature Lifecycle
D. Gradle Command Line
E. Documentation licenses
Glossary

List of Examples

4.1. Executing multiple tasks

4.2. Excluding tasks

4.3. Abbreviated task name

4.4. Abbreviated camel case task name

4.5. Selecting the project using a build file
4.6. Selecting the project using project directory
4.7. Forcing tasksto run

4.8. Obtaining information about projects
4.9. Providing a description for a project
4.10. Obtaining information about tasks
4.11. Changing the content of the task report

4.12. Obtaining more information about tasks

4.13. Obtaining detailed help for tasks

4.14. Obtaining information about dependencies

4.15. Filtering dependency report by configuration
4.16. Getting the insight into a particular dependency
4.17. Information about properties

5.1. Running the Wrapper task

5.2. Wrapper task

5.3. Wrapper generated files

5.4. Specifying the HTTP Basic Authentication credentials using system properties
5.5. Specifying the HTTP Basic Authentication credentialsindi st ri but i onUr |
5.6. Generating a SHA-256 hash

5.7. Configuring SHA-256 checksum verification

7.1. Declaring dependencies

7.2. Definition of an external dependency

7.3. Shortcut definition of an external dependency

7.4. Usage of Maven central repository

7.5. Usage of JCenter repository

7.6. Usage of aremote Maven repository

7.7. Usage of aremote lvy directory

7.8. Usage of alocal lvy directory

7.9. Publishing to an Ivy repository

7.10. Publishing to a Maven repository

8.1. Listing the projectsin abuild

10.1. Dependencies of my-app

10.2. Declaring a command-line composite

10.3. Declaring a separate composite

10.4. Depending on task from included build

10.5. Build that does not declare group attribute

10.6. Declaring the substitutions for an included build
10.7. Depending on a single task from an included build
10.8. Depending on atasks with path in al included builds
11.1. Launching the GUI

12.1. Setting properties with a gradle.propertiesfile
12.2. Configuring an HTTP proxy

12.3. Configuring an HTTPS proxy

14.1. Using the tooling API

15.1. Your first build script

15.2. Execution of abuild script

15.3. A task definition shortcut

15.4. Using Groovy in Gradl€'s tasks

15.5. Using Groovy in Gradle's tasks

15.6. Declaration of task that depends on other task
15.7. Lazy dependsOn - the other task does not exist (yet)
15.8. Dynamic creation of atask

15.9. Accessing atask via API - adding a dependency
15.10. Accessing atask via APl - adding behaviour
15.11. Accessing task as a property of the build script

15.12. Adding extra propertiesto atask

15.13. Using AntBuilder to execute ant.loadfile target
15.14. Using methods to organize your build logic
15.15. Defining a default task

15.16. Different outcomes of build depending on chosen tasks
17.1. Accessing property of the Project object

17.2. Using local variables

17.3. Using extra properties

17.4. Configuring arbitrary objects

17.5. Configuring arbitrary objects using a script

17.6. Groovy JDK methods

17.7. Property accessors

17.8. Method call without parentheses

17.9. List and map literals

17.10. Closure as method parameter

17.11. Closure delegates

18.1. Defining tasks

18.2. Defining tasks - using strings for task names

18.3. Defining tasks with alternative syntax

18.4. Accessing tasks as properties

18.5. Accessing tasks viatasks collection

18.6. Accessing tasks by path

18.7. Creating a copy task

18.8. Configuring atask - various ways

18.9. Configuring atask - with closure

18.10. Defining a task with closure

18.11. Adding dependency on task from another project
18.12. Adding dependency using task object

18.13. Adding dependency using closure

18.14. Adding a'must run after' task ordering

18.15. Adding a 'should run after' task ordering

18.16. Task ordering does not imply task execution
18.17. A 'should run after' task ordering isignored if it introduces an ordering cycle
18.18. Adding a description to atask

18.19. Overwriting atask

18.20. Skipping atask using a predicate

18.21. Skipping tasks with StopExecutionException
18.22. Enabling and disabling tasks

18.23. Custom task class

18.24. Ad-hoc task

18.25. Using runtime API with custom task type

18.26. Using skipWhenEmpty() viathe runtime API
18.27. Inferred task dependency viatask outputs

18.28. Inferred task dependency via atask argument
18.29. Declaring a method to add task inputs

18.30. Declaring a method to add atask as an input
18.31. Failed attempt at setting up an inferred task dependency
18.32. Setting up an inferred task dependency between output dir and input files

18.33. Setting up an inferred task dependency with files()
18.34. Setting up an inferred task dependency with builtBy()
18.35. Ignoring up-to-date checks

18.36. Task rule

18.37. Dependency on rule based tasks

18.38. Adding atask finalizer

18.39. Task finalizer for afailing task

19.1. Locating files

19.2. Creating afile collection

19.3. Using afile collection

19.4. Implementing afile collection

19.5. Creating afile tree

19.6. Using afile tree

19.7. Using an archive as afile tree

19.8. Specifying a set of files

19.9. Copying files using the copy task

19.10. Specifying copy task source files and destination directory
19.11. Selecting the files to copy

19.12. Copying files using the copy() method without up-to-date check
19.13. Copying files using the copy() method with up-to-date check
19.14. Renaming files as they are copied

19.15. Filtering files as they are copied

19.16. Nested copy specs

19.17. Using the Sync task to copy dependencies

19.18. Creating a ZIP archive

19.19. Creation of ZIP archive

19.20. Configuration of archive task - custom archive name
19.21. Configuration of archive task - appendix & classifier
20.1. Using an Ant task

20.2. Passing nested text to an Ant task

20.3. Passing nested elements to an Ant task

20.4. Using an Ant type

20.5. Using a custom Ant task

20.6. Declaring the classpath for a custom Ant task

20.7. Using a custom Ant task and dependency management together
20.8. Importing an Ant build

20.9. Task that depends on Ant target

20.10. Adding behaviour to an Ant target

20.11. Ant target that depends on Gradle task

20.12. Renaming imported Ant targets

20.13. Setting an Ant property

20.14. Getting an Ant property

20.15. Setting an Ant reference

20.16. Getting an Ant reference

20.17. Fine tuning Ant logging

21.1. Single project build

21.2. Hierarchical layout

21.3. Flat layout

21.4. Madification of elements of the project tree
21.5. Adding of test task to each project which has certain property set
21.6. Notifications

21.7. Setting of certain property to all tasks

21.8. Logging of start and end of each task execution
23.1. Using stdout to write log messages

23.2. Writing your own log messages

23.3. Using SLF4Jto write log messages

23.4. Configuring standard output capture

23.5. Configuring standard output capture for atask
23.6. Customizing what Gradle logs

24.1. Definition of a configuration

24.2. Accessing a configuration

24.3. Configuration of a configuration

24.4. Module dependencies

24.5. Artifact only notation

24.6. Dependency with classifier

24.7. Iterating over a configuration

24.8. Client module dependencies - transitive dependencies
24.9. Project dependencies

24.10. File dependencies

24.11. Generated file dependencies

24.12. Gradle API dependencies

24.13. Gradle's Groovy dependencies

24.14. Excluding transitive dependencies

24.15. Optional attributes of dependencies

24.16. Collections and arrays of dependencies

24.17. Dependency configurations

24.18. Dependency configurations for project

24.19. Configuration.copy

24.20. Accessing declared dependencies

24.21. Configuration.files

24.22. Configuration.files with spec

24.23. Configuration.copy

24.24. Configuration.copy vs. Configuration.files
24.25. Adding central Maven repository

24.26. Adding Bintray's JCenter Maven repository
24.27. Using Bintrays's JCenter with HTTP

24.28. Adding the local Maven cache as arepository
24.29. Adding custom Maven repository

24.30. Adding additional Maven repositories for JAR files
24.31. Accessing password protected Maven repository
24.32. Flat repository resolver

24.33. lvy repository

24.34. lvy repository with named layout

24.35. lvy repository with pattern layout

24.36. lvy repository with multiple custom patterns
24.37. lvy repository with Maven compatible layout

24.38. lvy repository

24.39. Declaring aMaven and vy repository

24.40. Providing credentialsto a Maven and I vy repository
24.41. Declaring a S3 backed Maven and lvy repository
24.42. Configure repository to use only digest authentication
24.43. Configure repository to use preemptive authentication
24.44. Accessing arepository

24.45. Configuration of a repository

24.46. Definition of a custom repository

24.47. Forcing consistent version for agroup of libraries
24.48. Using a custom versioning scheme

24.49. Blacklisting a version with a replacement

24.50. Changing dependency group and/or name at the resolution
24.51. Substituting a module with a project

24.52. Substituting a project with amodule

24.53. Conditionally substituting a dependency

24.54. Specifying default dependencies on a configuration
24.55. Enabling dynamic resolve mode

24.56. 'Latest' version selector

24.57. Custom status scheme

24.58. Custom status scheme by module

24.59. |vy component metadata rule

24.60. Rule source component metadatarule

24.61. Component selection rule

24.62. Component selection rule with modul e target

24.63. Component selection rule with metadata

24.64. Component selection rule using a rule source object
24.65. Declaring modul e replacement

24.66. Dynamic version cache control

24.67. Changing module cache control

25.1. Multi-project tree - water & bluewhale projects

25.2. Build script of water (parent) project

25.3. Multi-project tree - water, bluewhale & krill projects
25.4. Water project build script

25.5. Defining common behavior of all projects and subprojects
25.6. Defining specific behaviour for particular project

25.7. Defining specific behaviour for project krill

25.8. Adding custom behaviour to some projects (filtered by project name)
25.9. Adding custom behaviour to some projects (filtered by project properties)
25.10. Running build from subproject

25.11. Evaluation and execution of projects

25.12. Evaluation and execution of projects

25.13. Running tasks by their absolute path

25.14. Dependencies and execution order

25.15. Dependencies and execution order

25.16. Dependencies and execution order

25.17. Declaring dependencies

25.18. Declaring dependencies

25.19. Cross project task dependencies

25.20. Configuration time dependencies

25.21. Configuration time dependencies - evaluationDependsOn
25.22. Configuration time dependencies

25.23. Dependencies - real life example - crossproject configuration
25.24. Project lib dependencies

25.25. Project lib dependencies

25.26. Fine grained control over dependencies
25.27. Build and Test Single Project

25.28. Partial Build and Test Single Project

25.29. Build and Test Depended On Projects
25.30. Build and Test Dependent Projects

26.1. Applying a script plugin

26.2. Applying a core plugin

26.3. Applying acommunity plugin

26.4. Applying plugins only on certain subprojects.
26.5. Using plugins from custom plugin repositories.
26.6. Complete Plugin Publishing Sample

26.7. Applying abinary plugin

26.8. Applying a binary plugin by type

26.9. Applying a plugin with the buildscript block
29.1. Using the Build Dashboard plugin

31.1. Defining an artifact using an archive task
31.2. Defining an artifact using afile

31.3. Customizing an artifact

31.4. Map syntax for defining an artifact using afile
31.5. Configuration of the upload task

32.1. Using the Maven plugin

32.2. Creating a stand alone pom.

32.3. Upload of file to remote Maven repository
32.4. Upload of filevia SSH

32.5. Customization of pom

32.6. Builder style customization of pom

32.7. Modifying auto-generated content

32.8. Customization of Maven installer

32.9. Generation of multiple poms

32.10. Accessing a mapping configuration

33.1. Using the Signing plugin

33.2. Signing a configuration

33.3. Signing a configuration output

33.4. Signing atask

33.5. Signing atask output

33.6. Conditional signing

33.7. Signing a POM for deployment

34.1. Applying the “ivy-publish” plugin

34.2. Publishing a Java module to vy

34.3. Publishing additional artifact to vy

34.4. customizing the publication identity

34.5. Customizing the module descriptor file

34.6. Publishing multiple modules from a single project

34.7. Declaring repositories to publish to

34.8. Choosing a particular publication to publish

34.9. Publishing all publications viathe “publish” lifecycle task
34.10. Generating the vy module descriptor file

34.11. Publishing a Java module

34.12. Example generated ivy.xml

35.1. Applying the 'maven-publish’ plugin

35.2. Adding a MavenPublication for a Java component

35.3. Adding additional artifact to a MavenPublication

35.4. customizing the publication identity

35.5. Modifying the POM file

35.6. Publishing multiple modules from a single project

35.7. Declaring repositories to publish to

35.8. Publishing a project to a Maven repository

35.9. Publish a project to the Maven local repository

35.10. Generate a POM file without publishing

36.1. Using the distribution plugin

36.2. Adding extra distributions

36.3. Configuring the main distribution

36.4. publish main distribution

37.1. Using the announce plugin

37.2. Configure the announce plugin

37.3. Using the announce plugin

38.1. Using the build announcements plugin

38.2. Using the build announcements plugin from an init script
39.1. Defining a custom task

39.2. A hello world task

39.3. A customizable hello world task

39.4. A build for a custom task

39.5. A custom task

39.6. Using a custom task in another project

39.7. Testing a custom task

39.8. Defining an incremental task action

39.9. Running the incremental task for the first time

39.10. Running the incremental task with unchanged inputs
39.11. Running the incremental task with updated input files
39.12. Running the incremental task with an input file removed
39.13. Running the incremental task with an output file removed
39.14. Running the incremental task with an input property changed
40.1. A custom plugin

40.2. A custom plugin extension

40.3. A custom plugin with configuration closure

40.4. Evauating file properties lazily

40.5. A build for acustom plugin

40.6. Wiring for a custom plugin

40.7. Using a custom plugin in another project

40.8. Applying acommunity plugin with the plugins DSL

40.9. Testing a custom plugin

40.10. Using the Java Gradle Plugin Development plugin
40.11. Managing domain objects

41.1. Using the Java Gradle Plugin Development plugin

41.2. Using the gradlePlugin {} block.

42.1. Using inherited properties and methods

42.2. Using injected properties and methods

42.3. Configuring the project using an external build script
42.4. Custom buildSrc build script

42.5. Adding subprojects to the root buildSrc project

42.6. Running another build from a build

42.7. Declaring external dependencies for the build script

42.8. A build script with external dependencies

42.9. Ant optional dependencies

43.1. Using init script to perform extra configuration before projects are evaluated
43.2. Declaring external dependencies for an init script

43.3. Aninit script with external dependencies

43.4. Using pluginsin init scripts

44.1. Declaring the TestKit dependency

44.2. Declaring the JUnit dependency

44.3. Using GradleRunner with JUnit

44 4. Using GradleRunner with Spock

44.5. Making the code under test classpath available to the tests
44.6. Injecting the code under test classes into test builds

44.7. Using the Java Gradle Development plugin for generating the plugin metadata
44.8. Automatically injecting the code under test classesinto test builds
44.9. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin
44.10. Specifying a Gradle version for test execution

45.1. Using the Java plugin

45.2. Building a Java project

45.3. Adding Maven repository

45.4. Adding dependencies

45.5. Customization of MANIFEST.MF

45.6. Adding atest system property

45.7. Publishing the JAR file

45.8. Eclipse plugin

45.9. Java example - complete build file

45.10. Multi-project build - hierarchical layout

45.11. Multi-project build - settings.gradlefile

45.12. Multi-project build - common configuration

45.13. Multi-project build - dependencies between projects
45.14. Multi-project build - distribution file

46.1. Using the Java plugin

46.2. Custom Java source layout

46.3. Accessing a source set

46.4. Configuring the source directories of a source set

46.5. Defining a source set

46.6. Defining source set dependencies

46.7. Compiling a source set

46.8. Assembling a JAR for a source set

46.9. Generating the Javadoc for a source set

46.10. Running tests in a source set

46.11. Filtering tests in the build script

46.12. JUnit Categories

46.13. Grouping TestNG tests

46.14. Preserving order of TestNG tests

46.15. Grouping TestNG tests by instances

46.16. Creating a unit test report for subprojects

46.17. Customization of MANIFEST.MF

46.18. Creating a manifest object.

46.19. Separate MANIFEST.MF for a particular archive
46.20. Configure Java 6 build

47.1. War plugin

47.2. Running web application with Jetty plugin

48.1. Using the War plugin

48.2. Customization of war plugin

49.1. Using the Ear plugin

49.2. Customization of ear plugin

50.1. Using the Jetty plugin

51.1. Using the application plugin

51.2. Configure the application main class

51.3. Configure default VM settings

51.4. Include output from other tasks in the application distribution
51.5. Automatically creating files for distribution

52.1. Using the Javalibrary distribution plugin

52.2. Configure the distribution name

52.3. Include filesin the distribution

53.1. Groovy plugin

53.2. Dependency on Groovy

53.3. Groovy example - complete build file

54.1. Using the Groovy plugin

54.2. Custom Groovy source layout

54.3. Configuration of Groovy dependency

54.4. Configuration of Groovy test dependency

54.5. Configuration of bundled Groovy dependency
54.6. Configuration of Groovy file dependency

54.7. Configure Java 6 build for Groovy

55.1. Using the Scala plugin

55.2. Custom Scala source layout

55.3. Declaring a Scala dependency for production code
55.4. Declaring a Scala dependency for test code

55.5. Declaring aversion of the Zinc compiler to use
55.6. Forcing a scala-library dependency for all configurations
55.7. Forcing a scala-library dependency for the zinc configuration
55.8. Adjusting memory settings

55.9. Forcing all code to be compiled

55.10. Configure Java 6 build for Scala

55.11. Explicitly specify atarget IntelliJ IDEA version
56.1. Using the ANTLR plugin

56.2. Declare ANTLR version

56.3. setting custom max heap size and extra arguments for ANTLR
57.1. Using the Checkstyle plugin

57.2. Customizing the HTML report

58.1. Using the CodeNarc plugin

59.1. Using the FindBugs plugin

59.2. Customizing the HTML report

60.1. Using the JDepend plugin

61.1. Using the PMD plugin

62.1. Applying the JaCoCo plugin

62.2. Configuring JaCoCo plugin settings

62.3. Configuring test task

62.4. Configuring test task

62.5. Using application plugin to generate code coverage data
62.6. Coverage reports generated by applicationCodeCoverageReport
63.1. Using the OSGi plugin

63.2. Configuration of OSGi MANIFEST.MF file
64.1. Using the Eclipse plugin

64.2. Using the Eclipse WTP plugin

64.3. Partial Overwrite for Classpath

64.4. Partial Overwrite for Project

64.5. Export Dependencies

64.6. Customizing the XML

65.1. Using the IDEA plugin

65.2. Partial Rewrite for Module

65.3. Partial Rewrite for Project

65.4. Export Dependencies

65.5. Customizing the XML

66.1. applying arule source plugin

66.2. amodel creation rule

66.3. amodel mutation rule

66.4. creating atask

66.5. a managed type

66.6. a String property

66.7. aFile property

66.8. a Long property

66.9. a boolean property

66.10. an int property

66.11. a managed property

66.12. an enumeration type property

66.13. amanaged set

66.14. strongly modelling sources sets

66.15. aDSL example applying arule to every element in a scope
66.16. DSL configuration rule

66.17. Configuration run when required

66.18. Configuration not run when not required

66.19. DSL creation rule

66.20. DSL creation rule without initiaization

66.21. Initialization before configuration

66.22. Nested DSL creation rule

66.23. Nested DSL configuration rule

66.24. DSL configuration rule for each element in amap
66.25. Nested DSL property configuration

66.26. a DSL example showing type conversions

66.27. aDSL rule using inputs

66.28. model task output

69.1. Using the Java software plugins

69.2. Creating ajavalibrary

69.3. Configuring a source set

69.4. Creating a new source set

69.5. The components report

69.6. Declaring a dependency onto alibrary

69.7. Declaring a dependency onto a project with an explicit library
69.8. Declaring a dependency onto a project with an implicit library
69.9. Declaring a dependency onto alibrary published to a Maven repository
69.10. Declaring a module dependency using shorthand notation
69.11. Configuring repositories for dependency resolution
69.12. Specifying api packages

69.13. Specifying api dependencies

69.14. Main sources

69.15. Client component

69.16. Broken client component

69.17. Recompiling the client

69.18. Declaring target platforms

69.19. Declaring binary specific sources

69.20. Declaring target platforms

69.21. Using the JUnit plugin

69.22. Executing the test suite

69.23. Executing the test suite

69.24. Declaring a component under test

69.25. Declaring local Javainstallations

70.1. Using the Play plugin

70.2. The components report

70.3. Selecting a version of the Play Framework

70.4. Adding dependencies to a Play application

70.5. Adding extra source setsto a Play application

70.6. Configuring Scala compiler options

70.7. Configuring routes style

70.8. Configuring a custom asset pipeline

70.9. Configuring dependencies on Play subprojects
70.10. Add extrafilesto a Play application distribution
70.11. Applying both the Play and IDEA plugins

71.1. Defining alibrary component

71.2. Defining executable components

71.3. Sample build

71.4. Dependent components report

71.5. Dependent components report

71.6. Report of components that depends on the operators component

71.7. Report of components that depends on the operators component, including test suites
71.8. Assemble components that depends on the passing/static binary of the operators component
71.9. Build components that depends on the passing/static binary of the operators component
71.10. Adding a custom check task

71.11. Running checks for a given binary

71.12. The components report

71.13. The 'cpp' plugin

71.14. C++ source set

71.15. The'c' plugin

71.16. C source set

71.17. The 'assembler’ plugin

71.18. The 'objective-c' plugin

71.19. The 'objective-cpp’ plugin

71.20. Settings that apply to all binaries

71.21. Settings that apply to all shared libraries

71.22. Settings that apply to all binaries produced for the 'main’ executable component
71.23. Settings that apply only to shared libraries produced for the 'main’ library component
71.24. The 'windows-resources plugin

71.25. Configuring the location of Windows resource sources

71.26. Building aresource-only dll

71.27. Providing alibrary dependency to the source set

71.28. Providing alibrary dependency to the binary

71.29. Declaring project dependencies

71.30. Creating a precompiled header file

71.31. Including a precompiled header file in a source file

71.32. Configuring a precompiled header

71.33. Defining build types

71.34. Configuring debug binaries

71.35. Defining platforms

71.36. Defining flavors

71.37. Targeting a component at particular platforms

71.38. Building all possible variants

71.39. Defining tool chains

71.40. Reconfigure tool arguments

71.41. Defining target platforms

71.42. Registering CUnit tests

71.43. Running CUnit tests

71.44. Registering GoogleTest tests

72.1. an example of using a custom software model

72.2. Declare a custom component

72.3. Register a custom component

72.4. Declare a custom binary

72.5. Register a custom binary

72.6. Declare a custom source set

72.7. Register a custom source set

72.8. Generates documentation binaries

72.9. Generates tasks for text source sets

72.10. Register a custom source set

72.11. an example of using a custom software model
72.12. foo bar

72.13. public type and internal view declaration
72.14. type registration

72.15. public and internal data mutation

72.16. example build script and model report output
B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

Part |. About Gradle

1

| ntroduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build
technology in the Java (VM) world. Gradle provides:

* A very flexible general purpose build tool like Ant.

® Switchable, build-by-convention frameworks ala Maven. But we never lock you in!

* Very powerful support for multi-project builds.

* Very powerful dependency management (based on Apache Ivy).

® Full support for your existing Maven or Ivy repository infrastructure.

® Support for transitive dependency management without the need for remote repositories or pom xim
andi vy. xm files.

® Ant tasks and builds asfirst class citizens.

® Groovy build scripts.

A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the tutorials are waiting,
have fun:)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't
documented as completely as they need to be. Some of the content presented won't be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow
from one task to the task that the first task depends on.

Page 18 of 605

http://www.gradle.org/contribute

Overview

2.1. Features

Hereisalist of some of Gradle's features.

Declarative builds and build-by-convention
At the heart of Gradle lies arich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can
assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,
Web and Scala projects. Even more, this declarative language is extensible. Add your own new language
elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in
your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structureyour build
The suppleness and richness of Gradle finally allows you to apply common design principles to your
build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff
where unnecessary indirections would be inappropriate. Don't be forced to tear apart what belongs
together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn
your build into a maintenance nightmare. At last you can create a well structured, easily maintained,
comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle alows you to monitor and customize its configuration and execution behavior to its
very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up
to huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art
incremental build function, this is also true for tackling the performance pain many large enterprise
builds suffer from.

Multi-project builds
Gradl€e's support for multi-project build is outstanding. Project dependencies are first class citizens. We
alow you to model the project relationships in a multi-project build as they really are for your problem
domain. Gradle follows your layout not vice versa.

Page 19 of 605

Gradle provides partia builds. If you build a single subproject Gradle takes care of building all the
subprojects that subproject depends on. Y ou can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds thisis a big time saver for larger builds.

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and lvy
repositories to jars or directories on the local file system.

Gradleisthefirst build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.
Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at
runtime. You can depend on them from Gradle, you can enhance them from Gradle, you can even
declare dependencies on Gradle tasks in your build.xml. The same integration is provided for properties,
paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving
dependencies. Gradle also provides a converter for turning a Maven pom xmi into a Gradle script.
Runtime imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the
same branch where your production build lives and both can evolve in parallel. We usually recommend
to write tests that make sure that the produced artifacts are similar. That way migration is as less
disruptive and as reliable as possible. This is following the best-practices for refactoring by applying
baby steps.

Groovy

Gradl€e's build scripts are written in Groovy, not XML. But unlike other approaches thisis not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to
maintain build. The whole design of Gradle is oriented towards being used as a language, not as arigid
framework. And Groovy is our glue that allows you to tell your individual story with the abstractions
Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.
This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy
support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy resultsin
an enjoyable and productive experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed.
Thisis useful for example for some continuous integration servers. It is also useful for an open source
project to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is
a zero administration approach for the client machines. It also enforces the usage of a particular Gradle
version thus minimizing support issues.

Free and open source
Gradleis an open source project, and is licensed under the ASL.

Page 20 of 605

http://www.gradle.org/license

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer liesin
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. In such projects the team members will be very familiar with Java. We think a build
should be as transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think thisis a
valid question. It would have the highest transparency for your team and the lowest learning curve, but
because of the limitations of Java, such a build language would not be as nice, expressive and powerful asiit
could be. [1] Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as
it offers by far the greatest transparency for Java people. Its base syntax is the same as Java's as well as its
type system, its package structure and other things. Groovy provides much more on top of that, but with the
common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to |earn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn't have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML,
Javaand Lisp. It's funny that the 'if Java had that syntax’ syntax in this article is actually the Groovy syntax.

Page 21 of 605

http://www.defmacro.org/ramblings/lisp.html

Part I1. Working with
existing builds

3

Installing Gradle

3.1. Prerequisites

Gradle requires a Java JDK or JRE to be installed, version 7 or higher (to check, use j ava -ver si on).
Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing
Groovy instalation isignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment
variable to point to the installation directory of the desired JDK.

3.2. Download

Y ou can download one of the Gradle distributions from the Gradle web site.

3.3. Unpacking

The Gradle distribution comes packaged as a ZIP. The full distribution contains:

® The Gradle binaries.

® Theuser guide (HTML and PDF).

®* TheDSL reference guide.

®* The APl documentation (Javadoc).

® Extensive samples, including the examples referenced in the user guide, along with some complete and
more complex builds you can use as a starting point for your own build.

® The binary sources. This is for reference only. If you want to build Gradle you need to download the
source distribution or checkout the sources from the source repository. See the Gradle web site for
details.

3.4. Environment variables

For running Gradle, firstly add the environment variable GRADLE _HOME. This should point to the unpacked
files from the Gradle website. Next add GRADLE_HQOVE/ bi n to your PATH environment variable. Usualy,
thisis sufficient to run Gradle.

Page 23 of 605

http://www.gradle.org/downloads
http://www.gradle.org/development

3.5. Running and testing your installation

You run Gradle via the gradle command. To check if Gradle is properly installed just type gradle -v. The
output shows the Gradle version and also the local environment configuration (Groovy, VM version, OS,
etc.). The displayed Gradle version should match the distribution you have downloaded.

3.6. VM options

JVM options for running Gradle can be set via environment variables. You can use either GRADLE_OPTS
or JAVA_OPTS, or both. JAVA_OPTS is by convention an environment variable shared by many Java
applications. A typical use case would be to set the HTTP proxy in JAVA OPTS and the memory optionsin
GRADLE_OPTS. Those variables can also be set at the beginning of the gradle or gradlew script.

Note that it's not currently possible to set VM options for Gradle on the command line.

Page 24 of 605

A

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. Y ou run a build using the gradle command,
which you have aready seen in action in previous chapters.

4.1. Executing multiple tasks

You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For
example, the command gr adl e conpil e test will execute the conpi | e and t est tasks. Gradle
will execute the tasks in the order that they are listed on the command-line, and will also execute the
dependencies for each task. Each task is executed once only, regardless of how it came to be included in the
build: whether it was specified on the command-line, or as a dependency of another task, or both. Let's look
at an example.

Below four tasks are defined. Both di st andt est depend onthe conpi | e task. Running gr adl e di st te:
for this build script resultsin the conpi | e task being executed only once.

Figure4.1. Task dependencies

compile compileTest ek
test

Page 25 of 605

Example 4.1. Executing multiple tasks
buil d. gradl e

task conpile {
doLast {
println 'conpiling source
}
}

task conpi |l eTest (dependsOn: conpile) {
doLast {
println 'conpiling unit tests'
}
}

task test(dependsOn: [conpile, conpileTest]) {
doLast {
println 'running unit tests'

}
}

task di st (dependsOn: [conpile, test]) {
doLast {
println 'building the distribution'

}

Output of gr adl e di st test

> gradle dist test

:conpile

conpi | i ng source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

1 di st

bui |l ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Each task is executed only once, sogr adl e test test isexactlythesameasgradl e test.

4.2. Excluding tasks

Y ou can exclude atask from being executed using the - x command-line option and providing the name of
the task to exclude. Let'stry this with the sample build file above.

Page 26 of 605

Example 4.2. Excluding tasks
Output of gradl e di st -x test

> gradle dist -x test

:conpile
conpi ling source
1 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

You can see from the output of this example, that the t est task is not executed, even though it is a
dependency of thedi st task. You will also noticethat thet est task's dependencies, such asconpi | eTest
are not executed either. Those dependencies of t est that are required by another task, such as conpi | e,
are still executed.

4.3. Continuing the build when afailure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possiblein asingle build execution, you can usethe - - cont i nue option.

When executed with - - cont i nue, Gradle will execute every task to be executed where al of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

If atask fails, any subseguent tasks that were depending on it will not be executed, asit is not safe to do so.
For example, tests will not run if there is a compilation failure in the code under test; because the test task
will depend on the compilation task (either directly or indirectly).

4.4. Task name abbreviation

When you specify tasks on the command-line, you don't have to provide the full name of the task. Y ou only
need to provide enough of the task name to uniquely identify the task. For example, in the sample build
above, you can execute task di st by running gr adl e d:

Page 27 of 605

Example 4.3. Abbreviated task name

Output of gr adl e di

> gradl e di

:conpile

conpi ling source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

1 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can also abbreviate each word in a camel case task name. For example, you can execute task conpi | eTest
by running gr adl e conpTest orevengradle cT

Example 4.4. Abbreviated camel case task name
Output of gradl e cT

> gradle cT

:conpile
conpi l i ng source
:conpi | eTest

conpiling unit tests
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can also use these abbreviations with the - x command-line option.

4.5. Selecting which build to execute

When you run the gradle command, it looks for a build file in the current directory. You can use the - b
option to select another build file. If you use - b option then setti ngs. gradl e file is not used.
Example:

Page 28 of 605

Example 4.5. Selecting the project using a build file
subdi r/ myproj ect. gradl e

task hello {
doLast {
println "using build file '$buildFile.name' in '$buildFile.parentFile.nd

}

Output of gradl e -q -b subdir/nyproject.gradle hello

> gradle -q -b subdir/myproject.gradle hello
using build file "myproject.gradle' in 'subdir'.

Alternatively, you can use the - p option to specify the project directory to use. For multi-project builds you
should use - p option instead of - b option.

Example 4.6. Selecting the project using project directory

Outputof gradl e -gq -p subdir hello

> gradle -q -p subdir hello
using build file "build.gradle' in '"subdir'.

4.6. Forcing tasks to execute

Many tasks, particularly those provided by Gradle itself, support incremental builds. Such tasks can
determine whether they need to run or not based on whether their inputs or outputs have changed since the
last time they ran. You can easily identify tasks that take part in incremental build when Gradle displays the
text UP- TO- DATE next to their name during a build run.

You may on occasion want to force Gradle to run all the tasks, ignoring any up-to-date checks. If that's the
case, smply usethe - - r er un-t asks option. Here's the output when running atask both without and with
--rerun-tasks:

Example 4.7. Forcing taskstorun

Output of gr adl e dol t

> gradle dolt
:dolt UP- TO DATE

Output of gr adl e --rerun-tasks dolt

> gradle --rerun-tasks dolt
;dolt

Note that thiswill force all required tasks to execute, not just the ones you specify on the command line. It's
alittle like running acl ean, but without the build's generated output being del eted.

Page 29 of 605

4.7. Obtaining information about your build

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the project report plugin to add tasks to your
project which will generate these reports.

4.7.1. Listing projects

Running gr adl e proj ects gives you alist of the sub-projects of the selected project, displayed in a
hierarchy. Here is an example:

Example 4.8. Obtaining information about projects

Output of gradl e -q projects

> gradle -q projects

Root project 'projectReports
+--- Project ':api' - The shared APl for the application
\--- Project ':webapp' - The Wb application inplenentation

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

The report shows the description of each project, if specified. Y ou can provide a description for a project by
setting thedescr i pt i on property:

Example 4.9. Providing a description for a project

buil d. gradl e

description = ' The shared APl for the application'

4.7.2. Listing tasks

Running gr adl e tasks givesyou alist of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task. Below is an example of this report:

Page 30 of 605

Example 4.10. Obtaining information about tasks
Output of gr adl e -qg tasks

> gradle -q tasks

Al'l tasks runnable fromroot project

Default tasks: dists

Bui |l d tasks

clean - Deletes the build directory (build)
dists - Builds the distribution

libs - Builds the JAR

Bui |l d Setup tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Cenerates Gradle wapper files. [incubating]

Hel p tasks

bui | dEnvi ronment - Displays all buildscript dependencies declared in root project 'p
conponents - Displays the conponents produced by root project 'projectReports'. [inc
dependenci es - Displays all dependencies declared in root project 'projectReports'.

dependencyl nsight - Displays the insight into a specific dependency in root project

dependent Conponents - Displays the dependent conponents of conmponents in root projec
help - Displays a hel p nessage.

nodel - Displays the configuration nodel of root project 'projectReports'. [incubati
projects - Displays the sub-projects of root project 'projectReports'.

properties - Displays the properties of root project 'projectReports'.

tasks - Displays the tasks runnable fromroot project 'projectReports’ (sone of the

To see all tasks and nore detail, run gradle tasks --all

To see nore detail about a task, run gradle help --task <task>

By default, this report shows only those tasks which have been assigned to a task group. Y ou can do this by
setting the gr oup property for the task. You can aso set the descri pti on property, to provide a
description to be included in the report.

Example 4.11. Changing the content of the task report

bui | d. gradl e

dists {
description = 'Builds the distribution'

group = 'build'

You can obtain more information in the task listing using the - - al | option. With this option, the task
report lists all tasks in the project, grouped by main task, and the dependencies for each task. Here is an
example:

Page 31 of 605

Example 4.12. Obtaining mor e infor mation about tasks
Output of gradl e -qg tasks --all

> gradle -q tasks --all

Al'l tasks runnable fromroot project

Default tasks: dists

Bui | d tasks
clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp: cl ean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:!libs]
docs - Builds the docunentation
api:libs - Builds the JAR
api:conpile - Conpiles the source files
webapp: libs - Builds the JAR [api:|ibs]
webapp: conpile - Conpiles the source files

Buil d Setup tasks
init - Initializes a new Gradl e build. [incubating]
wrapper - Cenerates Gradl e wapper files. [incubating]

Hel p tasks

bui | dEnvi ronment - Displays all buildscript dependencies declared in root project 'p
api : bui | dEnvi ronnent - Displays all buildscript dependencies declared in project ':a
webapp: bui | dEnvi ronment - Displays all buildscript dependenci es declared in project
conponents - Displays the conponents produced by root project 'projectReports'. [inc
api : conponents - Displays the conponents produced by project ':api'. [incubating]
webapp: conmponents - Displays the conponents produced by project ':webapp'. [incubati
dependenci es - Displays all dependencies declared in root project 'projectReports'.
api : dependenci es - Displays all dependencies declared in project ':api'.

webapp: dependenci es - Displays all dependencies declared in project ':webapp'.
dependencyl nsight - Displays the insight into a specific dependency in root project
api : dependencyl nsight - Displays the insight into a specific dependency in project
webapp: dependencyl nsight - Displays the insight into a specific dependency in projec
dependent Conponents - Displays the dependent conponents of conponents in root projec
api : dependent Conponents - Di spl ays the dependent conponents of components in project
webapp: dependent Conponents - Displays the dependent conponents of conponents in proj
help - Displays a hel p nessage.

api :hel p - Displays a hel p nessage.

webapp: hel p - Displays a hel p message.

nmodel - Displays the configuration nodel of root project 'projectReports'. [incubati
api : nodel - Displays the configuration nodel of project ':api'. [incubating]
webapp: nodel - Displays the configuration nodel of project ':webapp'. [incubating]

projects - Displays the sub-projects of root project 'projectReports'.

api : projects - Displays the sub-projects of project ':api’.

webapp: proj ects - Displays the sub-projects of project ':webapp'.

properties - Displays the properties of root project 'projectReports'.

api : properties - Displays the properties of project ':api'.

webapp: properties - Displays the properties of project ':webapp'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (sonme of the
api :tasks - Displays the tasks runnable fromproject ':api'.

webapp: tasks - Displays the tasks runnable from project ':webapp'.

Page 32 of 605

4.7.3. Show task usage details

Running gradl e hel p --task sonmeTask gives you detailed information about a specific task or
multiple tasks matching the given task name in your multiproject build. Below is an example of this detailed
information:

Example 4.13. Obtaining detailed help for tasks

Outputof gradl e -q help --task libs

> gradle -gq help --task libs
Detailed task information for |ibs

Pat hs
capi:libs
:webapp: i bs

Type
Task (org.gradle. api. Task)

Description
Bui |l ds the JAR

G oup
buil d

This information includes the full task path, the task type, possible commandline options and the description
of the given task.

4.7.4. Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project, broken
down by configuration. For each configuration, the direct and transitive dependencies of that configuration
are shown in atree. Below is an example of this report:

Page 33 of 605

Example 4.14. Obtaining infor mation about dependencies
Output of gr adl e - g dependenci es api : dependenci es webapp: dependenci es

> gradl e -q dependenci es api: dependenci es webapp: dependenci es

Project :api - The shared APl for the application

conpil e
\--- org.codehaus. groovy: groovy-all:2.4.7

t est Conpil e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

Proj ect :webapp - The Wb application inplenentation

conpile

+--- project :api

| \--- org.codehaus. groovy: groovy-all:2.4.7
\--- comons-io: commons-io: 1.2

t est Conpi l e

No dependenci es

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.
Thisis achieved with the optional - - conf i gur at i on parameter:
Example 4.15. Filtering dependency report by configuration

Output of gradl e -qg api : dependenci es --configuration testConpile
> gradl e -q api:dependencies --configuration testConpile

Project :api - The shared APl for the application

t est Compi l e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

4.7.5. Listing project buildscript dependencies

Running gr adl e bui | dEnvi r onnment visualises the buildscript dependencies of the selected project,
similarly to how gr adl e dependenci es visualises the dependencies of the software being built.

Page 34 of 605

4.7.6. Getting the insight into a particular dependency

Running gr adl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input. Below is an example of this report:

Example 4.16. Getting theinsight into a particular dependency
Output of gr adl e -g webapp: dependencyl nsi ght --dependency groovy --configuratior

> gradl e -q webapp: dependencyl nsi ght --dependency groovy --configuration conpile
or g. codehaus. groovy: groovy-all:2.4.7
\--- project :api

\--- compile

This task is extremely useful for investigating the dependency resolution, finding out where certain
dependencies are coming from and why certain versions are selected. For more information please see the
Dependencyl nsi ght Report Task classin the APl documentation.

The built-in dependencylnsight task is a part of the 'Help' tasks group. The task needs to be configured with
the dependency and the configuration. The report looks for the dependencies that match the specified
dependency spec in the specified configuration. If Java related plugins are applied, the dependencylnsight
task is pre-configured with the ‘compile’ configuration because typicaly it's the compile dependencies we
are interested in. You should specify the dependency you are interested in via the command line
"--dependency’ option. If you don't like the defaults you may select the configuration via the '--configuration'
option. For more information see the Dependencyl nsi ght Report Task class in the AP
documentation.

4.7.7. Listing project properties

Running gr adl e properti es givesyou alist of the properties of the selected project. Thisis a snippet
from the output:

Example 4.17. Infor mation about properties
Output of gradl e -q api : properties
> gradle -q api:properties

Project :api - The shared APl for the application

al | projects: [project ':api']

ant: org.gradle.api.internal.project. DefaultAntBuil der @2345

ant Bui | der Factory: org.gradle.api.internal.project. DefaultAntBuil der Fact ory@=2345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er _Decorated@?
asDynam cObj ect: Dynami cObject for project ':api'

baseCl assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoader Scope
bui | dDi r: /hone/user/ gradl e/ sanpl es/ usergui de/tutorial/projectReports/api/build

bui | dFi | e: /home/ user/ gradl e/ sanpl es/ user gui de/tutorial/projectReports/api/build. gra

Page 35 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html

4.7.8. Profiling a build

The - - profi | e command line option will record some useful timing information while your build is
running and write a report to the bui | d/ report s/ profi | e directory. The report will be named using
the time when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times
for configuration and task execution are sorted with the most expensive operations first. The task execution
results also indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the bui | dSr ¢/ bui
directory.

Profiled with tasks: -xtest build

Summary Configuration Task
Total Build Time 2:01.164 | |: 2.804 | |:docs
Startup 0.313| | :docs 0.576 :docs:userguideSingleHu
Settings and BuildSrc 4078 | |:core 0.203 :docs:userguidePdf
Loading Projects 0074 | |:announce 0.084 :docs:checkstyle Api
Configuring Projects 3208 | [mi 0.036 :docs:userguideStyleShes
Total Task Execution 1:52.671 | |:openApi 0.035 :docs:groovydoc
‘maven 0.033 :docs:samples
:codeQuality 0.033 :docs:javadoc
‘wrapper 0.022 :docs:userguideFragment
:eclipse 0.021 :docs:distDocs
ridea 0.021 :docs:samplesDocs
:plugins 0.020 :docs:userguide Xhtml
Jlauncher 0.020 :docs:userguideHuml
:antr 0.017 :docs:userguideDocbook
:0sgi 0.014 :docs:remoteUserguideD
jetty 0.014 :docs:samplesDochook
:scala 0.012 :docs:docs
:docs:userguide
core
:core:compileTestGroovy
:core:codenarcTest
:core:checkstyleMain

4.8. Dry Run

Sometimes you are interested in which tasks are executed in which order for agiven set of tasks specified on
the command line, but you don't want the tasks to be executed. You can use the - moption for this. For
example, if yourun “gradl e -m cl ean conpil e”, you'll see al the tasks that would be executed as
part of the cl ean and conpi | e tasks. This is complementary to the t asks task, which shows you the
tasks which are available for execution.

Page 36 of 605

4.9. Summary

In this chapter, you have seen some of the things you can do with Gradle from the command-line. Y ou can
find out more about the gradle command in Appendix D, Gradle Command Line.

Page 37 of 605

5

The Gradle Wrapper

Most tools require installation on your computer before you can use them. If the installation is easy, you
may think that’s fine. But it can be an unnecessary burden on the users of the build. Equally importantly,
will the user install the right version of the tool for the build? What if they’re building an old version of the
software?

The Gradle Wrapper (henceforth referred to as the “Wrapper”) solves both these problems and is the
preferred way of starting a Gradle build.

5.1. Executing a build with the Wrapper

If a Gradle project has set up the Wrapper (and we recommend all projects do so), you can execute the build
using one of the following commands from the root of the project:

® . /gradl ew <t ask> (on Unix-like platforms such as Linux and Mac OS X)
® gradl ew <t ask> (on Windows using the gradlew.bat batch fil€)

Each Wrapper istied to a specific version of Gradle, so when you first run one of the commands above for a
given Gradle version, it will download the corresponding Gradle distribution and use it to execute the build.

Not only does this mean that you don’'t have to manually install
Gradle yourself, but you are also sure to use the version of

Gradle that the build is designed for. This makes your historical IDEs
builds more reliable. Just use the appropriate syntax from above When importing a Gradle
whenever you see a command line starting with gradl e . .. project via its wrapper, your
in the user guide, on Stack Overflow, in articles or wherever. IDE may ask to use the Gradle
‘all' distribution. This is
For completeness sake, and to ensure you don’t delete any perfectly fine and helps the IDE
important files, here are the files and directories in a Gradle provide code completion for the
project that make up the Wrapper: build files.

® gradl ew(Unix Shell script)

® gradl ew. bat (Windows batch file)

® gradl e/ w apper/ gradl e-w apper.jar (Wrapper JAR)

® gradl e/ w apper/ gradl e-w apper . properti es (Wrapper properties)

If you' re wondering where the Gradle distributions are stored, you'll find them in your user home directory
under SUSER_HOME/ . gr adl e/ wr apper/ di st s.

Page 38 of 605

5.2. Adding the Wrapper to a project

The Wrapper is something you should check into version control. By distributing the Wrapper with your
project, anyone can work with it without needing to install Gradle beforehand. Even better, users of the
build are guaranteed to use the version of Gradle that the build was designed to work with. Of course, thisis
also great for continuous integration servers (i.e. servers that regularly build your project) as it requires no
configuration on the server.

You install the Wrapper into your project by running the wr apper task. (This task is aways available,

even if you don't add it to your build). To specify a Gradle version use - - gr adl e- ver si on on the
command-line. By default, the Wrapper will use a bi n distribution. Thisis the smallest Gradle distribution.
Some tools, like Android Studio and Intellij IDEA, provide additional context information when used with
theal | distribution. You may select a different Gradle distribution type by using - - di st ri buti on-type

. You can also set the URL to download Gradle from directly via - - gr adl e-di stri bution-url . If

no version or distribution URL is specified, the Wrapper will be configured to use the gradle version the wr apper
task is executed with. So if you run the wr apper task with Gradle 2.4, then the Wrapper configuration will
default to version 2.4.

Example 5.1. Running the Wrapper task
Output of gr adl e wr apper --gradl e-version 2.0

> gradle wapper --gradle-version 2.0
I Wr apper

BU LD SUCCESSFUL

Total time: 1 secs
The Wrapper can be further customized by adding and configuring a W apper task in your build script, and
then executing it.

Example 5.2. Wrapper task

bui | d. gradl e

task wrapper(type: Wapper) {

gradl eVersion = '2.0'

}

After such an execution you find the following new or updated files in your project directory (in case the
default configuration of the Wrapper task is used).

Page 39 of 605

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Example 5.3. Wrapper generated files
Build layout

si npl e/
gradl ew
gr adl ew. bat

gr adl e/ wr apper/
gr adl e-wr apper. j ar
gr adl e- wr apper . properties

All of these files should be submitted to your version control system. This only needs to be done once. After
these files have been added to the project, the project should then be built with the added gradlew
command. The gradlew command can be used exactly the same way as the gradle command.

If you want to switch to a new version of Gradle you don't need to rerun the wr apper task. It is good
enough to change the respective entry in the gr adl e- wr apper . properti es file but if you want to
take advantage of new functionality in the Gradle wrapper, then you would need to regenerate the wrapper
files.

5.3. Configuration

If you run Gradle with gradlew, the Wrapper checks if a Gradle distribution for the Wrapper is available. If
S0, it delegates to the gradle command of this distribution with all the arguments passed originally to the
gradlew command. If it didn't find a Gradle distribution, it will download it first.

When you configure the W apper task, you can specify the Gradle version you wish to use. The gradlew
command will download the appropriate distribution from the Gradle repository. Alternatively, you can
specify the download URL of the Gradle distribution. The gradlew command will use this URL to
download the distribution. If you specified neither a Gradle version nor download URL, the gradlew
command will download whichever version of Gradle was used to generate the Wrapper files.

For the details on how to configure the Wrapper, seethe W apper classin the API documentation.

If you don't want any download to happen when your project is built via gradlew, simply add the Gradle
distribution zip to your version control at the location specified by your Wrapper configuration. A relative
URL is supported - you can specify adistribution file relative to the location of gr adl e- wr apper . properti«
file.

If you build viathe Wrapper, any existing Gradle distribution installed on the machine isignored.

5.4. Authenticated Gradle distribution download

The Gradle W apper can download Gradle distributions from
servers using HTTP Basic Authentication. This enables you to
host the Gradle distribution on a private protected server. You
can specify a username and password in two different ways HTTP Basic Authentication
depending on your use case: as system properties or directly should only be used with HTTPS

Security Warning

Page 40 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

embedded in the di stri buti onUrl . Credentias in system URLs and not plain HTTP ones.
properties take precedence over the ones embedded in di st ri but i onWith Basic Authentication, the
user credentials are sent in clear

text.
Using system properties can be doneinthe. gr adl e/ gr adl e. properties

file in the user's home directory, or by other means, see
Section 12.1, “Configuring the build environment via
gradle.properties’.

Example 5.4. Specifying the HT TP Basic Authentication credentials using system properties

gradl e. properties

syst enPr op. gr adl e. wr apper User =user nane
syst enPr op. gr adl e. w apper Passwor d=passwor d

Embedding credentialsinthedi st ri buti onUr| inthegr adl e/ w apper/ gr adl e- w apper . propert
file also works. Please note that this file is to be committed into your source control system. Shared
credentials embedded indi st ri buti onUr | should only be used in a controlled environment.

Example 5.5. Specifying the HT TP Basic Authentication credentialsin di stri buti onUr |

gr adl e-wr apper . properties

di stributionUrl=https://usernane: passwor d@onehost/ pat h/to/ gradl e-di stri buti on. 2

This can be used in conjunction with a proxy, authenticated or not. See Section 12.3, “Accessing the web via
aproxy” for more information on how to configure the W apper to use aproxy.

5.5. Verification of downloaded Gradle
distributions

The Gradle Wrapper alows for verification of the downloaded Gradle distribution via SHA-256 hash sum
comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker
from tampering with the downloaded Gradle distribution.

To enable this feature you'll want to first calculate the SHA-256 hash of a known Gradle distribution. Y ou
can generate a SHA-256 hash from Linux and OSX or Windows (via Cygwin) with the shasum command.

Example 5.6. Generating a SHA-256 hash

> shasum -a 256 gradle-2.4-all.zip
371ch9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b82368bcf 10 gradl e- 2. 4-al |

Add the returned hash sum to the gr adl e- wr apper . properti es usingthedi st ri buti onSha256Sum
property.

Page 41 of 605

https://www.cygwin.com/

Example5.7. Configuring SHA-256 checksum verification

gr adl e-wr apper . properties

di stributi onSha256Sum=371ch9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b8234

5.6. Unix file permissions

The Wrapper task adds appropriate file permissions to allow the execution of the gr adl ew *NIX
command. Subversion preserves this file permission. We are not sure how other version control systems deal
with this. What should always work isto execute “sh gr adl ew’.

Page 42 of 605

6

The Gradle Daemon

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under the
direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As aresult, it can sometimes seem a little slow to start. The solution to this
problem is the Gradle Daemon: a long-lived background process that executes your builds much more
quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping
process as well as leveraging caching, by keeping data about your project in memory. Running Gradle
builds with the Daemon is no different than without. Simply configure whether you want to use it or not -
everything elseis handled transparently by Gradle.

6.1. Why the Gradle Daemon is important for
performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of VM startup for every
build, but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the
benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We
recommend profiling your build by using - - profi | e to get a sense of how much impact the Gradle
Daemon can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don't have to do anything to
benefit fromit.

6.2. Running Daemon Status

To get alist of running Gradle Daemons and their statuses use the --status command.

Sample output:

Page 43 of 605

Pl D VERSI ON STATUS

28411 3.0 | DLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status
output will only show Daemons for the version of Gradle being invoked and not for any other versions.
Future versions of Gradle will lift this constraint and will show the running Daemons for all versions of
Gradle.

6.3. Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it for developers' machines.
There are several ways to disable the Daemon, but the most common one isto add the line

org. gradl e. daenon=f al se

to the file «<USER_HOVE»/ . gr adl e/ gr adl e. properti es, where «USER_HOVE» is your home
directory. That's typically one of the following, depending on your platform:

® C:.\Users\<usernanme> (WindowsVista& 7+)
¢ [/ User s/ <user name> (Mac OS X)
* / home/ <user nanme> (Linux)

If that file doesn't exist, just create it using a text editor. You can find details of other ways to disable (and
enable) the Daemon in Section 6.5, “FAQ” further down. That section aso contains more detailed
information on how the Daemon works.

Once you have globally enabled the Daemon in this way, al your builds will take advantage of the speed
boost, regardless of the version of Gradle a particular build uses.

Continuous

6.4. Stopping an existing integration
Daemon

At the moment, we recommend

As mentioned, the Daemon is a background process. You that you disable the Daemon for
needn’t worry about a build up of Gradle processes on your Continuous Integration servers
machine, though. Every Daemon monitors its memory usage as correctness is usualy a
compared to total system memory and will stop itself if idle priority over speed in CI
when available system memory is low. If you want to explicitly environments. Using a fresh
stop running Daemon processes for any reason, just use the runtime for each build is more
command gr adl e - - st op. reliable since the runtime is
completely isolated from any
This will terminate all Daemon processes that were started with previous builds. Additionally,
the same version of Gradle used to execute the command. If you since the Daemon primarily acts

Page 44 of 605

have the Java Development Kit (JDK) installed, you can easily to reduce build startup times,
verify that a Daemon has stopped by running the jps command. thisisn't as critical in Cl asitis
You'll see any running Daemons listed with the name Gr adl eDaenon on adeveloper's machine.

6.5. FAQ

6.5.1. How do | disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

* Via environment variables: add the flag - Dor g. gr adl e. daenon=f al se to the GRADLE_OPTS
environment variable
Viapropertiesfile: add or g. gr adl e. daenon=f al se tothe «<GRADLE_USER_HOVE»/ gr adl e. pr ope
file

Note, «GRADLE_USER _HOME» defaults to «USER_HOME»/ . gr adl e, where «USER_HOVE» is

the home directory of the current user. This location can be configured viathe - g and - - gr adl e- user - hor
command line switches, aswell as by the GRADLE_USER_HOVE environment variable and or g. gr adl e. us
JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users
choose the second option and add the entry to the user gr adl e. pr operti es file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "%JSERPROFILEY . gradle" nkdir "%JSERPROFILEY% . gradle") && (echo.

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the
current user:

nkdir -p ~/.gradl e & echo "org. gradl e. daenon=f al se" >> ~/.gradl e/ gradl e. propert

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started
unless explicitly requested using the - - daernon option.

The - - daenon and - - no- daenmon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line options
have the highest precedence when considering the build environment. Typically, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without
requiring to remember to supply the - - daenon option.

Page 45 of 605

6.5.2. Why is there more than one Daemon process on my machine?

There are severa reasons why Gradle will create a new Daemon, instead of using one that is aready
running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible
Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don't have to
worry about cleaning them up manually.

idle
Anidle Daemonis onethat is not currently executing a build or doing other useful work.

compatible
A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java runtime used to execute the build is an example aspect of the build environment.
Another exampleisthe set of VM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running
with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible
and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the
JVM has started. For example, it is not possible to change the memory alocation (e.g. - Xnx1024m),
default text encoding, default locale, etc of arunning VM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.
See Chapter 12, The Build Environment for details on how to specify and control the build environment.

The following VM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s VM has for this property, the Daemon is not
compatible.

¢ file.encoding

® user.language

® user.country

® user.variant

® javaio.tmpdir

® javax.net.ssl.keyStore

® javax.net.ssl.keyStorePassword
® javax.net.sdl.keyStoreType

® javax.net.sdl.trustStore

® javax.net.ssl.trustStorePassword
® javax.net.sd.trustStoreType

® com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match
exactly in order for a Daemon to be compatible.

® The maximum heap size (i.e. the -Xmx VM argument)
® The minimum heap size (i.e. the -Xms JVM argument)

Page 46 of 605

® The boot classpath (i.e. the -Xbootclasspath argument)
® The"“assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versionsis a common reason for having more than one running Daemon process.

6.5.3. How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB
of heap. It will use your the IVM's default minimum heap size. 1GB is more than enough for most builds.
Larger builds with hundreds of subprojects, lots of configuration, and source code may require, or perform
better, with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Chapter 12, The Build Environment for details.

6.5.4. How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to

stop a Daemon process before this, you can either kill the process via your operating system or runthe gr adl e -
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same
Gradle version used to run the command, terminate themselves.

6.5.5. What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive
during day to day development. However, Daemon processes can occasionally be corrupted or exhausted. A
Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily
tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process
through defects such as memory leaks or global state corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do
not release resources correctly. Thisis a particularly poignant problem when using Microsoft Windows as it
islessforgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when aleak is starting to exhaust the available
heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running
build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be
disabled by setting the org. gradl e. daenon. perfor mance. enabl e-noni t ori ng system
property to false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the - - no- dae
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or
not the Daemon is actually the culprit of a problem.

Page 47 of 605

6.6. When should | not use the Gradle Daemon?

It is recommended that the Daemon is used in al developer environments. It is recommend to disable the
Daemon for Continuous Integration and build server environments.

The Daemon enables faster builds, which is particularly important when a human is sitting in front of the
build. For CI builds, stability and predictability is of utmost importance. Using a fresh runtime (i.e. process)
for each build is more reliable as the runtime is completely isolated from previous builds.

6.7. Tools & IDEs

The Gradle Tooling API (see Chapter 14, Embedding Gradle using the Tooling API), that is used by IDES
and other tools to integrate with Gradle, always use the Gradle Daemon to execute builds. If you are
executing Gradle builds from within you're IDE you are using the Gradle Daemon and do not need to enable
it for your environment.

However, unless you have explicitly enabled the Gradle Daemon for you environment your builds from the
command line will not use the Gradle Daemon.

6.8. How does the Gradle Daemon make builds
faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build. This has
the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed
to once for each build. Thisin itself isasignificant performance optimization, but that's not where it stops.

A significant part of the story for modern VM performance is runtime code optimization. For example,
HotSpot (the VM implementation provided by Oracle and used as the basis of OpenJDK) applies
optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the
code is progressively optimized during execution which means that subsequent builds can be faster purely
due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5
and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and
the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed
by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can
maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for incremental
building.

Page 48 of 605

6.8.1. Potential future enhancements

Currently, the Daemon makes builds faster by effectively supporting in memory caching and by the VM
optimizer making the code faster. In future Gradle versions, the Daemon will become even smarter and
perform work preemptively. It could, for example, start downloading dependencies immediately after the

build script has been edited under the assumption that the build is about to be run and the newly changed or
added dependencies will be required.

There are many other ways in that the Gradle Daemon will enable even faster builds in future Gradle
versions.

Page 49 of 605

v

Dependency M anagement Basics

This chapter introduces some of the basics of dependency management in Gradle.

7.1. What is dependency management?

Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the
things that your project needs to build or run, in order to find them. We call these incoming files the
dependencies of the project. Secondly, Gradle needs to build and upload the things that your project
produces. We call these outgoing files the publications of the project. Let's ook at these two piecesin more
detail:

Most projects are not completely self-contained. They need files built by other projects in order to be
compiled or tested and so on. For example, in order to use Hibernate in my project, | need to include some
Hibernate jars in the classpath when | compile my source. To run my tests, | might also need to include
some additional jarsin the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle alows you to tell it what the
dependencies of your project are, so that it can take care of finding these dependencies, and making them
available in your build. The dependencies might need to be downloaded from a remote Maven or lvy
repository, or located in a local directory, or may need to be built by another project in the same
multi-project build. We call this process dependency resolution.

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify
absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names’ of your
dependencies, and other layers determine where to get those dependencies from. You can get similar
behavior from Ant by adding Apache lvy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core
requires several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for
your project, it also needs to find these dependencies and make them available. We call these transitive

dependencies.

The main purpose of most projectsis to build some files that are to be used outside the project. For example,
if your project produces a Java library, you need to build a jar, and maybe a source jar and some
documentation, and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for
you. You declare the publications of your project, and Gradle take care of building them and publishing
them somewhere. Exactly what “publishing” means depends on what you want to do. You might want to

Page 50 of 605

copy thefilesto alocal directory, or upload them to aremote Maven or lvy repository. Or you might use the
filesin another project in the same multi-project build. We call this process publication.

7.2. Declaring your dependencies

Let'slook at some dependency declarations. Here's a basic build script:

Example 7.1. Declaring dependencies

bui | d. gradl e

apply plugin: 'java

repositories {
mavenCentral ()

}

dependenci es {
conpi l e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fing
testConpile group: 'junit', nane: 'junit', version: '4.+

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate
core 3.6.7.Fina isrequired to compile the project's production source. By implication, Hibernate core and its
dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to
compile the project’s tests. It also tells Gradle to look in the Maven central repository for any dependencies
that are required. The following sections go into the details.

7.3. Dependency configurations

In Gradle dependencies are grouped into configurations. A configuration is simply a named set of
dependencies. We will refer to them as dependency configurations. Y ou can use them to declare the external
dependencies of your project. As we will see later, they are also used to declare the publications of your
project.

The Java plugin defines a number of standard configurations. These configurations represent the classpaths
that the Java plugin uses. Some are listed below, and you can find more details in Table 46.5, “ Java plugin -
dependency configurations”.

compile
The dependencies required to compile the production source of the project.

runtime
The dependencies required by the production classes at runtime. By default, also includes the compile
time dependencies.

testCompile
The dependencies required to compile the test source of the project. By default, also includes the
compiled production classes and the compile time dependencies.

Page 51 of 605

testRuntime
The dependencies required to run the tests. By default, also includes the compile, runtime and test
compile dependencies.

Various plugins add further standard configurations. Y ou can also define your own custom configurations to
use in your build. Please see Section 24.3, “Dependency configurations” for the details of defining and
customizing dependency configurations.

7.4. External dependencies

There are various types of dependencies that you can declare. One such type is an external dependency.
This is a dependency on some files built outside the current build, and stored in a repository of some kind,
such as Maven central, or a corporate Maven or lvy repository, or adirectory in the local file system.

To define an external dependency, you add it to a dependency configuration:

Example 7.2. Definition of an external dependency

bui | d. gradl e

dependenci es {

conpil e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fing

}

An external dependency is identified using gr oup, nane and ver si on attributes. Depending on which
kind of repository you are using, gr oup and ver si on may be optional.

The shortcut form for declaring external dependencieslookslike“ gr oup: nane: versi on”.

Example 7.3. Shortcut definition of an external dependency
bui |l d. gradl e

dependenci es {
conpi |l e ' org. hi bernat e: hi bernat e-core: 3. 6. 7. Fi nal

}

To find out more about defining and working with dependencies, have a look at Section 24.4, “How to
declare your dependencies’.

7.5. Repositories

How does Gradle find the files for external dependencies? Gradle looks for them in a repository. A
repository isreally just a collection of files, organized by gr oup, nane and ver si on. Gradle understands
several different repository formats, such as Maven and lvy, and several different ways of accessing the
repository, such as using the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use
external dependencies. One option is use the Maven central repository:

Page 52 of 605

Example 7.4. Usage of Maven central repository

bui | d. gradl e

repositories {

mavenCent ral ()

}

Or Bintray's JCenter:

Example 7.5. Usage of JCenter repository
bui |l d. gradl e

repositories {
jcenter()

}

Or aany other remote Maven repository:

Example 7.6. Usage of aremote Maven repository
bui |l d. gradl e

repositories {
maven {
url "http://repo. myconpany. conl maven2"

}

Or aremote lvy repository:

Example 7.7. Usage of aremote vy directory
buil d. gradl e

repositories {
ivy {
url "http://repo. myconpany. coni repo"

}

Y ou can aso have repositories on the local file system. Thisworks for both Maven and Ivy repositories.

Example 7.8. Usage of a local Ivy directory
bui |l d. gradl e
repositories {

ivy {
/1l URL can refer to a |local directory

url "../local -repo"

Page 53 of 605

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order
they are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have alook at Section 24.6, “ Repositories’.

7.6. Publishing artifacts

Dependency configurations are also used to publish files.l? We call these files publication artifacts, or
usualy just artifacts.

The plugins do a pretty good job of defining the artifacts of a project, so you usually don't need to do
anything special to tell Gradle what needs to be published. However, you do need to tell Gradle where to
publish the artifacts. You do this by attaching repositories to the upl oadAr chi ves task. Here's an
example of publishing to aremote Ivy repository:

Example 7.9. Publishing to an Ivy repository

bui | d. gradl e

upl oadAr chi ves {
repositories {
vy {
credentials {
user nane "usernanme"
password " pw'

}

url "http://repo. nyconpany. cont'

Now, when you run gr adl e upl oadAr chi ves, Gradle will build and upload your Jar. Gradle will also
generateand upload ani vy. xm aswell.

You can also publish to Maven repositories. The syntax is slightly different.[3 Note that you also need to
apply the Maven plugin in order to publish to a Maven repository. when thisisin place, Gradle will generate
and upload apom xmi .

Example 7.10. Publishing to a Maven repository

bui | d. gradl e

apply plugin: 'maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")

To find out more about publication, have alook at Chapter 31, Publishing artifacts.

Page 54 of 605

7.7. Where to next?

For all the details of dependency resolution, see Chapter 24, Dependency Management, and for artifact
publication see Chapter 31, Publishing artifacts.

If you are interested in the DSL elements mentioned here, have a look at
Proj ect.configurations{},Project.repositories{} andProject.dependenci es{}.

Otherwise, continue on to some of the other tutorids.

[2] Wethink thisis confusing, and we are gradually teasing apart the two conceptsin the Gradle DSL.

[3] We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

Page 55 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)

8

| ntroduction to multi-project builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,
monolithic application. It's often much easier to digest and understand a project that has been split into
smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you
typically want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

8.1. Structure of a multi-project build

Such builds comein all shapes and sizes, but they do have some common characteristics:

* Asettings. gradl efileintheroot or mast er directory of the project

®* Abuil d. gradl e fileintheroot or mast er directory

® Child directories that have their own *. gr adl e build files (some multi-project builds may omit child
project build scripts)

Thesettings. gradl e file tells Gradle how the project and subprojects are structured. Fortunately, you
don’'t have to read this file smply to learn what the project structureis as you can run the command gr adl e pr c
. Here's the output from using that command on the Java multiproject build in the Gradle samples:

Example 8.1. Listing the projectsin a build
Output of gradl e -q projects

> gradle -q projects

Root project 'nultiproject’

+--- Project ':api'

+--- Project ':services'

| +--- Project ':services:shared

| \--- Project ':services:webservice'
\--- Project ':shared

To see a list of the tasks of a project, run gradl e <project-path>:tasks
For exanple, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The services

Page 56 of 605

project then has its own children, shared and webservice. These map to the directory structure, so it's easy
to find them. For example, you can find webservice in <r oot >/ ser vi ces/ webser vi ce.

By default, Gradle uses the name of the directory it findsthe set ti ngs. gr adl e as the name of the root
project. This usually doesn't cause problems since al developers check out the same directory name when
working on a project. On Continuous Integration servers, like Jenkins, the directory name may be
auto-generated and not match the name in your VCS. For that reason, it's recommended that you always set
the root project name to something predictable, even in single project builds. You can configure the root
project name by setting r oot Pr oj ect . nane.

Each project will usually have its own build file, but that's not necessarily the case. In the above example,
the services project is just a container or grouping of other subprojects. There is no build file in the
corresponding directory. However, multiproject does have one for the root project.

The root bui | d. gr adl e is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to al the child projects. It can also be used
to configure individual subprojects when it is preferable to have al the configuration in one place. This
means you should always check the root build file when discovering how a particular subproject is being
configured.

Another thing to bear in mind is that the build files might not be called bui | d. gr adl e. Many projects

will name the build files after the subproject names, such as api . gr adl e and ser vi ces. gr adl e from

the previous example. Such an approach helpsalot in IDEs because it’s tough to work out which bui | d. gr adl
file out of twenty possibilities is the one you want to open. This little piece of magic ishandled by the set t i ngs
file, but as a build user you don’t need to know the details of how it's done. Just have a look through the
child project directoriesto find the fileswith the . gr adl e suffix.

Once you know what subprojects are available, the key question for a build user is how to execute the tasks
within the project.

8.2. Executing a multi-project build

From a user's perspective, multi-project builds are still collections of tasks you can run. The difference is
that you may want to control which project's tasks get executed. Y ou have two options here:

® Changeto the directory corresponding to the subproject you' re interested in and just execute gr adl e <t ask
asnhormal.

* Useagquadified task name from any directory, although thisis usually done from the root. For example: gr adl
will build the webservice subproject and any subprojects it depends on.

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case
of a multi-project build. The command gr adl e t est will execute the t est task in any subprojects,
relative to the current working directory, that have that task. So if you run the command from the root
project directory, you'll runt est in api, shared, services:shared and services.webservice. If you run the

command from the services project directory, you'll only execute the task in services:.shared and
services:webservice.

For more control over what gets executed, use qualified names (the second approach mentioned). These are

Page 57 of 605

paths just like directory paths, but use ‘" instead of /" or ‘\'. If the path begins with a‘:’, then the path is
resolved relative to the root project. In other words, the leading ‘' represents the root project itself. All other
colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use
thet asks task, eg. gradl e : servi ces: webservi ce: t asks .

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects
that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you're
interested in how thisis configured, you can read about writing multi-project builds later in the user guide.

There' s one last thing to note. When you’ re using the Gradle wrapper, the first approach doesn’t work well
because you have to specify the path to the wrapper script if you're not in the project root. For example, if
you're in the webservice subproject directory, you would havetorun. ./ ../ gradl ew bui | d.

That’s all you really need to know about multi-project builds as a build user. Y ou can now identify whether
a build is a multi-project one and you can discover its structure. And finally, you can execute tasks within
specific subprojects.

Page 58 of 605

9

Continuous build

Continuous build is an incubating feature. This means that it is incomplete and not yet at regular
Gradle production quality. This also means that this Gradle User Guide chapter is awork in progress.

Typicaly, you ask Gradle to perform a single build by way of specifying tasks that Gradle should execute.
Gradle will determine the the actual set of tasks that need to be executed to satisfy the request, execute them
al, and then stop doing work until the next request. A continuous build differs in that Gradle will keep
satisfying the initial build request (until instructed to stop) by executing the build when it is detected that the
result of the previous build is now out of date. For example, if your build compiles Java source files to Java
class files, a continuous build would automatically initiate a compile when the source files change.
Continuous build is useful for many scenarios.

9.1. How do | start and stop a continuous build?

A continuous build can be started by supplying either the - - cont i nuous or -t switchesto Gradle, along

with the list of tasks, switches and arguments that define the work to do. For example, gr adl e buil d --cont
. This will have the same effect as running gr adl e bui | d, but instead of Gradle exiting when done, it

will wait for changes to the build inputs. When a change occurs, gr adl e bui | d will be automatically
executed again and the process repeats.

If Gradle is attached to an interactive input source, such as aterminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D).
If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process
must be terminated (e.g. using the ki | I command or similar). If the build is being executed via the Tooling
AP, the build can be cancelled using the Tooling API's cancellation mechanism.

9.2. What will cause a subsequent build?

At thistime, only changes to task inputs are noticed. Gradle will
start watching for changes just before the task starts to execute.

No other changes will initiate a build. For example, changes to T file InpUtS
build scripts and build logic will not initiate build. Likewise, Task implementations declare
changes to files that are read during the configuration of the their file system inputs by

annotating their properties with
I nput Fi | es and other similar

Page 59 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/InputFiles.html

build, not the execution, will not initiate a build. In order to annotations. Please see
incorporate such changes, the continuous build must be restarted Section 18.9, “Up-to-date
manually. checks (AKA Incremental

Build)” for more information.
Consider a typical build using the Java plugin, using the

conventional filesystem layout. The following diagram
visualizes the task graph for gr adl e bui | d:

Figure 9.1. Java plugin task graph

compileJava
processResources

Classes

test

clean

The following key tasks of the graph use filesin the corresponding directories as inputs:

compileJava
src/ main/java
processResour ces
src/ mai n/ resour ces
compileTestJava
src/test/java
processT estResour ces
src/test/resources

Assuming that the initial build is successful (i.e. the bui | d task and its dependencies complete without
error), changes to filesin, or the addition/remove of files from, the locations listed above will initiate a new
build. If achange is made to aJava sourcefilein sr ¢/ mai n/ j ava, the build will fire and all tasks will be
scheduled. Gradle's incremental build support ensures that only the tasks that are actually affected by the
change are executed.

If the change to the main Java source causes compilation to fail, subsequent changesto the test sourcein src/ t e
will not initiate a new build. As the test source depends on the main source, there is no point building until

the main source has changed, potentially fixing the compilation error. After each build, only the inputs of

the tasks that actually executed will be monitored for changes.

Continuous build isin no way coupled to compilation. It works for all types of tasks. For example, the pr ocessF
task copies and processes the files from sr ¢/ mai n/ r esour ces for inclusion in the built JAR. Assuch, a
change to any filein this directory will also initiate a build.

Page 60 of 605

9.3. Limitations and quirks

There are several issuesto be aware with the current implementation of continuous build. These are likely to
be addressed in future Gradle rel eases.

9.3.1. Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while
executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs
are modified again, the build will be triggered again. This isn't unique to continuous build. A task that
modifiesits own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters abuild cycle like this, you can track down the task by looking at the list of files reported
changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a

task that has that file as an input. In some cases, it may be obvious (e.g., a Javafileis compiled with conpi | eJa

). In other cases, you can use - - i nf o logging to find the task that is out-of-date due to the identified files.

9.3.2. Restrictionswith Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific options,
which means that:

® OnMac OS X, Gradlewill pall for file changes every 10 seconds instead of every 2 seconds.
® On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause
continuous build to no longer work on very large projects.

9.3.3. Performance and stability

The JDK file watching facility relies on inefficient file system polling on Mac OS X (see: JDK-7133447).
This can significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on Mac OS X (see: JDK-8079620).
This will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit
continuous build and start again.

On Linux, OpendDK's implementation of the file watch service can sometimes miss file system events (see:
JDK-8145981).

9.3.4. Changes to symbolic links

® Creating or removing symbolic link to fileswill initiate a build.

* Modifying the target of asymbolic link will not cause arebuild.

® Creating or removing symbolic links to directories will not cause rebuilds.

® Creating new filesin the target directory of a symbolic link will not cause arebuild.
® Dédleting the target directory will not cause arebuild.

Page 61 of 605

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

9.3.5. Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that
changes to task configuration, or any other change to the build model, are effectively ignored.

Page 62 of 605

10

Composite builds

Composite build is an incubating feature. While useful for many use cases, there are bugs to be
discovered, rough edges to smooth, and enhancements we plan to make. Thanks for trying it out!

10.1. What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is similar to
a Gradle multi-project build, except that instead of including single pr oj ect s, complete bui | ds are
included.

Composite builds alow you to:
* combine builds that are usually developed independently, for instance when trying out a bug fix in a
library that your application uses
® decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build".
Included builds do not share any configuration with the composite build, or the other included builds. Each
included build is configured and executed in isolation.

Included builds interact with other builds via dependency substitution. If any build in the
composite has a dependency that can be satisfied by the included build, then that dependency will be
replaced by a project dependency on the included build.

By default, Gradle will attempt to determine the dependencies that can be substituted by an included build.
However for more flexibility, it is possible to explicitly declare these substitutions if the default ones
determined by Gradle are not correct for the composite. See Section 10.3, “Declaring the dependencies
substituted by an included build”.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task dependencies
on the composite build or on other included builds. See Section 10.4, “Depending on tasks in an included
build”.

Page 63 of 605

10.2. Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally developed
separately can be combined into a composite build. For these examples, the my- ut i | s multi-project build
produces 2 different java libraries (nunber-utils and string-utils), and the my-app build
produces an executable using functions from those libraries.

The ny-app build does not have direct dependencies on my-utils. Instead, it declares binary
dependencies on the libraries produced by ny- uti | s.
Example 10.1. Dependencies of my-app

ny-app/ bui | d. gradl e
apply plugin: 'java
apply plugin: "application
apply plugin: 'idea'

group “"org.sanple"
version "1.0"

mai nCl assNane = "org. sanpl e. myapp. Mai n"

dependenci es {
conpi l e "org. sanpl e: nunber-utils:1.0"
conpile "org.sanple:string-utils:1.0"

}

repositories {
jcenter ()

}

Note: The code for this example can be found at sanpl es/ conposi t eBui | ds/ basi ¢ in the
‘-all’ distribution of Gradle.

10.2.1. Defining a composite build via- - i ncl ude-bui | d

The - - i ncl ude- bui | d command-line argument turns the executed build into a composite, substituting
dependencies from the included build into the executed build.

Page 64 of 605

Example 10.2. Declaring a command-line composite
Output of gradl e --include-build ../my-utils run

> gradle --include-build ../ny-utils run

[conposite-build] Configuring build: /home/user/gradl e/ sanpl es/ conpositeBuil ds/ basic
:conpi | eJava

sny-utils:nunber-utils:conpil elava
my-utils:nunmber-utils: processResources UP-TO DATE
my-utils:nunmber-utils:classes
my-utils:nunber-utils:jar
my-utils:string-utils:conpileJava
my-utils:string-utils: processResources UP-TO DATE
my-utils:string-utils:classes
my-utils:string-utils:jar

: processResources UP- TO DATE

:cl asses

irun

The answer is 42

BUI LD SUCCESSFUL

10.2.2. Defining a composite build viaset t i ngs. gradl e

It's possible to make the above arrangement persistent, by using
Settings.includeBuil d(java. | ang. Obj ect) todeclaretheincluded buildinthesetti ngs. gr adl
file. The setti ngs. gradl e file can be used to add subprojects and included builds at the same time.
Included builds are added by location. See the examples below for more details.

10.2.3. Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it less
useful as a standalone build. One way to avoid this is to define a separate composite build, whose only
purpose is to combine otherwise separate builds.
Example 10.3. Declaring a separ ate composite

settings.gradle

r oot Proj ect . nane=" adhoc'

includeBuild '../ny-app'
includeBuild . ./my-utils'

In this scenario, the 'main’ build that is executed is the composite, and it doesn't define any useful tasks to
execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build must define a
delegating task.

Page 65 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

Example 10.4. Depending on task from included build
buil d. gradl e

task run {
dependsOn gradl e. i ncl udedBui I d(' my-app').task(' :run")

}

More details tasks that depend on included build tasks below.

10.2.4. Restrictions on included builds

Most builds can be included into a composite, however there are some limitations.
Every included build:

®* must haveasettings. gradl e file

* must not itself be a composite build.

®* must not havear oot Pr oj ect . nane the same as another included build.

* must not havear oot Pr oj ect . nane the same as atop-level project of the composite build.

®* must not havear oot Pr oj ect . nane the same as the composite build r oot Pr oj ect . nane.

10.3. Declaring the dependencies substituted by
an included build

By default, Gradle will configure each included build in order to determine the dependenciesit can provide.
The algorithm for doing this is very simple: Gradle will inspect the group and name for the projects in the
included build, and substitute project dependencies for any external dependency matching ${ pr oj ect . gr oup}

There are cases when the default substitutions determined by Gradle are not sufficient, or they are not
correct for a particular composite. For these cases it is possible to explicitly declare the substitutions for an
included build. Take for example a single-project build ‘'unpublished’, that produces a java utility library but
does not declare a value for the group attribute:

Example 10.5. Build that does not declare group attribute

bui |l d. gradl e
apply plugin: 'java'

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:unpublished" ("undefined" being the default value for proj ect. gr oup, and 'unpublished'
being the root project name). Clearly this isn't going to be very useful in a composite build. To use the
unpublished library unmodified in a composite build, the composing build can explicitly declare the
substitutions that it provides:

Page 66 of 605

Example 10.6. Declaring the substitutionsfor an included build
settings.gradle

root Proj ect. nane = '

includeBui l d('../anonynmous-|ibrary"') {

dependencySubstitution {
substitute nodul e(' org. sanpl e: nunber-utils") with project(':")

}

With this configuration, the "my-app" composite build will substitute any dependency on or g. sanpl e: nunber

with a dependency on the root project of "unpublished".

10.3.1. Cases where included build substitutions must be declared

Many builds that use the upl oadAr chi ves task to publish artifacts will function automatically as an
included build, without declared substitutions. Here are some common cases where declared substitutions
arerequired:

* Whenthear chi vesBaseNane property is used to set the name of the published artifact.

® When aconfiguration other than def aul t ispublished: this usually means atask other than upl oadAr chi \

isused.

* Whenthe MavenPom addFi | t er () isused to publish artifacts that don't match the project name.

* When the maven- publ i sh or i vy- publ i sh plugins are used for publishing, and the publication
coordinates don't match ${ pr oj ect . gr oup}: ${ pr oj ect . nane}.

10.3.2. Cases where composite build substitutions won't work

Some builds won't function correctly when included in a composite, even when dependency substitutions are
explicitly declared. This limitation is due to the fact that a project dependency that is substituted will aways
point to the def aul t configuration of the target project. Any time that the artifacts and dependencies
specified for the default configuration of a project don't match what is actually published to a repository,
then the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

* When aconfiguration other than def aul t is published.
* Whenthemaven- publ i sh ori vy- publ i sh pluginsare used.
* Whenthe POMor i vy. xnl fileistweaked as part of publication.

Builds using these features function incorrectly when included in a composite build. We plan to improve this
in the future.

Page 67 of 605

10.4. Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a composite
build is able to declare task dependencies on it's included builds. The included builds are accessed using

Gradl e. get I ncl udedBui | ds() or Gradl e. i ncl udedBui | d(j ava.l ang. String), and a
task referenceis obtained viathe | ncl udedBui | d. t ask(j ava. | ang. St ri ng) method.

Using these APIs, it is possible to declare a dependency on atask in a particular included build, or tasks with
acertain path in all or some of the included builds.

Example 10.7. Depending on a single task from an included build

bui | d. gradl e

task run {
dependsOn gradl e. i ncl udedBui I d(' my-app').task(' :run")

}

Example 10.8. Depending on a taskswith path in all included builds
bui |l d. gradl e

task publishDeps {
dependsOn gradl e. i ncl udedBui | ds*. task("' : upl oadAr chi ves')

}

10.5. Current limitations and future plans for
composite builds

We think composite builds are pretty useful already. However, there are some things that don't yet work the
way we'd like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:

* No support for included builds that have publications that don't mirror the project default configuration.
See Section 10.3.2, “ Cases where composite build substitutions won't work”.

® No native support for composite builds in IntelliJ IDEA or Eclipse Buildship. Generating IDEA
metadatawith gr adl e i dea issupported.

® Native builds are not supported. (Binary dependencies are not yet supported for native builds).

Improvements we have planned for upcoming releases include:

® Better detection of dependency substitution, for build that publish with custom coordinates, builds that
produce multiple components, etc. Thiswill reduce the cases where dependency substitution needs to be
explicitly declared for an included build.

® The ability to target a task or tasks in an included build directly from the command line. We are
currently exploring syntax options for allowing this functionality, which will remove many cases where
adelegating task is required in the composite.

Page 68 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

Execution of included builds in parallel.

Detection of changes to included builds when running with continuous build (- t).
Making the implicit bui | dSr ¢ project an included build.

Supporting composite-of-composite builds.

Page 69 of 605

11

Using the Gradle Graphical User Interface

In addition to supporting a traditional command line interface, Gradle offers a graphical user interface. This
isastand alone user interface that can be launched with the --gui option.

Example 11.1. Launching the GUI

Note that this command blocks until the Gradle GUI is closed. Under *nix it is probably preferable to run
this as a background task (gradle --gui&)

If you run this from your Gradle project working directory, you should see atree of tasks.

Page 70 of 605

Figure1l.1. GUI Task Tree

Gradle

Task Tree | Favaorites || Command Line || Seh..lp|

[Refresh] [Execute | [Filter] [+] Show Description

=-multiproject ~
[+-api 1
--ser‘-riu:es

=}-shared

~huild Builds and tests this project

----- uilds and tests this project and all projects that depend on it

-huildMeeded Builds and tests this project and all projects it depends on

~gean Deletes the build directory.

~-compile Compiles the main Java source,

~-compileTest Compiles the test Java source. [\}5

~dists Builds all Jar, War, Zip, and Tar archives

-edipse Generates an Eclipse .project and .dasspath file.

~edipseClean Deletes the Edipse .project and .classpath files.

—edipseCp Generates an Edipse . dasspath file,

-eripseProject Generates an Edipse .project file,

-edipseWtpModule Generates the Edipse Wip files,

Execute 'shared:buildDependents' X

Completed successfully at 3:17:05 PM

>

:3ervices :webservice:processREesocurces
:gervices :webservice:jar SEIEEED
api-uploedbDefaultInternal

gervices iwebservice:war

zervices :webservice:libks

services :webservice:dists
gervices:webservice:compileTest T
gervices :webservice:processTestResocurces
zervices :webservice:test

< | ¥

(%

It is preferable to run this command from your Gradle project directory so that the settings of the Ul will be
stored in your project directory. However, you can run it then change the working directory via the Setup tab
inthe Ul.

The Ul displays 4 tabs along the top and an output window a ong the bottom.

11.1. Task Tree

The Task Tree shows a hierarchical display of al projects and their tasks. Double clicking atask executesit.

There is aso afilter so that uncommon tasks can be hidden. Y ou can toggle the filter via the Filter button.
Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks show up in red.
Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:

Page 71 of 605

® Execute ignoring dependencies. This does not require dependent projects to be rebuilt (same as the -a
option).

® Add tasksto the favorites (see Favorites tab)

® Hidethe selected tasks. This adds them to the filter.

® Edit the build.gradle file. Note: this<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>